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Abstract

Simulation methods are now widely used in econometrics. The range of uses covers the estimation of

parameters of moedels as well as the use of models. In this paper we discuss how simulation methods can be used to investigate
some issues that have proven extremely difficult to handle analytically. Specifically, we consider the questions of how to
measure the business cycle characteristics associated with macroeconomic models and the estimation of the parameters of a

popular latent variable model.

. INTRODUCTION

Over a decade ago the late Chris Higgins reflected on what
he had learned during a distinguished carcer in Australian
economic modelling for policy decisions, He summarized
his thoughts with the maxim ‘sitnulate early and simulate
cften’. This is a remarkably prescient observation. Today
simulation has firmly established itself within the set of
activities engaged in by modeliers and in econometric work
more generally. It is almost impossible o write about
econometrics today without acknowledging the importance
of simulation methods. Yet in this continuity there has
been change. When Chris spoke about the need to simulate,
he was referring to the use of siimulation methods as a way
of learning about 2 model and the interactions within it.
Indeed simulation was the basic ingredient in the response
dissection technique of Helliwell and Higgins (1976),
wherein one attempted to discover which parts of the
system were responsible for particular outcomes by
temporarily removing them from the system. What Chris
did in this work was to use simulation methods to tackie
questions regarding large scale and mildly non-linear
systems that could not be readily answered analytically.

Most of us got our first exposure to simulation methods in
one of two ways. The first was through the application just
described, while the second was when we wished to know
something more about the properties of estimators and tests
thai econometricians were either wonlt to dream up or to
import from the statistics literature. Those of us who took
this latter path became heavily involved in stochastic
simulations, learning how to do it efficiently with the aid
of techniques such as anti-thetic and control variables. In
fact the two streams were not mutually exclusive. Everyone
recognised the desirability of stochasticaily simulating
econometric maodels, but few had the resources to do so,
Moreover, it didn’t seem likely that it would lead to any
radically different insights, the reason being that the stoch-
astic simulations simply tried to account for the fact that
equations were not exact when drawing conclusions from
experiments conducted with the models. Fundamentally, the
‘uncertainly coming from these errors did not enter into the
modelling process in any substantial way. Around 1980
this began to change. Lowered computational costs, the
advent of powerful matrix languages such as GAUSS and
MATLAB, and the development of stochastic programming
methods meant that ong could explicitly aliow for the
influence of such uncertainty upon decisions. Expectations
about events now became a powerful factor in determining
the dynamics of such models. The idea that unpredictabie
stochastic elements, ‘shocks’, are the driving forces of
economic systems came (o be (reated as the standard view, a
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fact that is evident today in aimost any academic and much
policy discussion. The ability to stochastically simulate
models became an important element in this transition,

Just as the possibility of performing stochastic simulations
meant that the nature of economic modelling would be
changed, so too did this possibility open up a much broader
class of models that econometricians might be able
study. In particolar, it become possible to handle models
featuring latent variables. Earlier work with the latter used
the Kalman filter but, given the strong assumptiens
employed in its derivation, it was desirable to produce
methods that were more general. Under the heading of
‘indirect estimation’ such methods have now become quile
popular. Since latent variabies models appear in many
guises—factors in the Arbitrage Pricing Model in capital
asset pricing; the instantaneous tate in lerm structure
models; and total productivity shocks in real business cycle
models of the macro-economy—such developments are very
tmportant.

From the above sketch it is clear that simulation is now
a vital part of guantitative analysis. But it really is a
thumbnail sketch and totally abstracts from many other
uses of simulation methods—examples being bootstrap
methods for generating sampling distributions and the
numerical evaluation of multivariate integrals, the latter
having revolutionised Bayesian and much micro
econometrics. It also ignores what are more mundane uses
of the methods. I suspect that the standard approach to
many problems teday would be to first simulate what is to
be studied in order to get some idea of the issues that are
tikely to arise when one is attempting to explain oulcomes.
Thirty years ago the analagous step in this sequence was (o
get a mathematical solution to the problem and to then
engage in sensitivity analysis. Whilst the latter course of
action is still probably the most informative, simulation
has democratized the process of formulating and using
models. One can learn a lot about them just from
simulation and no loager does one have to be a superb
mathematician to acguire such knowledge, What
distinguishes workers pow i3 their ability to think
constructively about the design of simulation cxperiments,
not their mathematical prowess.

Faced with all of the above ways in which simulation gets
used in econometrics { have decided to recount two
examples {rom my own research in which simulation has
been the main technique for analysing an issue. The first of
these topics relates to what it is we need lo generate a
husiness cycle while the second looks at the estimation of
some popular latent variable models in econometrics.



Table 1: AR{Z) fitted to GDP*®

Country by ba Period

Austratia 889 077 196001-1996Q4
Canada 1207 218 1960Q1-196604
Denmark 92 .77 1977Q 1199604
France 1.079  -.142 1970Q1-199604
Japan 1136 -.145 1970031199604
The Netherlands H10 254 197701199604
New Zealand A44 303 198201199604
Switzertand [4tt -460 1967(Q3-1996Q4
Urited Kingdom 955 017 196001199604
United States 1.258  -299 1965001199604

* The model fitted is log GDP; = a + blegGDPry +
balogGDPL2 + ¢t

Data Source: OECD Data base in DX,

2. GENERATING A BUSINESS CYCLE

Bconomies cxperience business cycles. For at least a
ceatury models have been buill in an attempt o produce an
explanation of this phenomenon, Many of the ‘models’ are
1o vague to be described mathematicatly, but those that
have been made precise fail into two categories. In the first
category are those which produce a description of outpul as
a second order AutOTRgTEssive Process:
yu=biyet +baye2 (h
where the roots of the pelynomial in the lag operator L,
{im—b]L~h3L2), are taken o be compicx. Because this
would produce a periodic cycle it is generally augmented
with a shock v, so that cycles would not all be the same.
Following the latter strategy leads to cycles being described
as occurring when there is a peak in the spectral densily of
v, The biggest difficulty with this formulation is that there
is almost no empirical evidence lo support it. Letling vy be
the log of Gross Domestic Product (GDP), after regressing
oul g Hinear tread. Table 1 shows estimates of by and by
from ten OECD couniries, For no country are there any
complex roots.

One response to this observation has been to dispense with
the linearity of (1) and the resulting non-linear models for
y, have had a long history in business cycles research e.g.
Goodwin (1067). Today there are many papers appearing
with such an orientaiion. Some of the proponents of this
solution are very dismissive of research into business
cycles that feature linear models ¢.g. Blatt (1983) and Keen
{1953}, as they claim that linear models are incapable of
generating a realistic cycle, A different response would be
that it is not the model that needs 1o be changed. but rather
the definition of 2 eycle. Egualing the exislence of a
business cycle with complex roots in (1), or the possibility
of chaotic solutions in non-linear models, ignores the fact
ihat this is not the way in which business cycles are
actuatly identified and described. What we know about
husiness cycles stems {rom an analysis of patrerns within
data and, in particular, from the identification of local peaks
and troughs in o series purporting (¢ measure activity,
1deally this is done visually, but any observer will almost

certainty filter out some variation that is not regarded as
sufficiently 'long-lived’ or of insufficient magnitude to be
treated as a recession or expansion. Replication of turning
points would therefore be very difficult. Attempts to make
the dating process replicable have therefore focused upon
the formulation of some rules to give discipline to the task.
Of these the best known set of rules would be those of the
National Bureau of Economic Research in the USA, as
codified in the computer program of Bry and Boschan
{1971).} Table 2 presents these rules.

Table 2: Bry-Boschan Procedure for
Programmed Determination of Turning Poinis

1 Determination of extremes and substitution of values.

Il Determination of cycles in 12-month moving average
(extremes replaced}

A. Identification of points higher (or fower) than 3
months on either side.
R. Enforcement of alternation of turns by selecting

highest of muliiple peaks (or lowest of multiple
troughs).

II Determination of corresponding turns in Spencer curve

(extremes replaced)

A. Identification of highest (or lowest) value within
+5 menths of selected turn in 12-month moving
average,

B. Enforcement of minimum cycle duration of 15

months by eliminating Jower peaks and higher
troughs of shorter cycles.

IV Determination of corresponding turns in short-term
moving average of 3 to 6 months, depending on

MCD (months of cyclical dominance)

A. Identification of highest {or lowest) value within
+5 months of selected turn in Spencer curve.

Determination of turning points in unsmoothed series

A. Identification of highest (or lowest) value within
+4 months of selecied turn in short-term maving
average.

Elimination of turns within 6 months of
beginning and end of series.

Elimination of peaks (or troughs) at both ends of
series which are lower {or higher) than values
closer to end.,

Elimination of cycles whose duration is less than
15 months.

E. Elimination of phases whose duration is less than
5 months.

VI Statement of final turning points.

Adopting the definition of a cycle implicit in the rules of
Table ? we are left with the guestion of whether & lincar
process like (1), without complex roots, is capable of
generating 2 business cycle such as seen in countries

! This program is widely used in the actual dating of business
cycles, although, in practice, the program output is the input
into a complex process. As discussed in Bry and Boschan, it
does guite well in predicting the results of this mare complex
process,




around the world. Columns (i)~(ii} of Table 3 present
characteristics of the cycle in Australia and the United
Kingdom, Clearly the cycles are of different length and it is
noticeable that expansions are much fonger than
contractions, an ‘asymmetry’ feature thal some argue is the
justification for non-linear models e.g., Blatt (1983). Qur
objective is to study whal processes for output could
produce the observed characleristics. To simplify the
presentation we will assume a special form of (i)
Ay=a+ug @)
where y; = logGDP-at, ‘a’ represents the trend growth rate
in GDP, ug is a shock and Ay, =y~v..|. The shock
potentially has some serial correlation ie.,
Up =pUuy + e (3
where ¢; has no serial correlation with standard deviation of
o. Some of the countries in Table | can be represented very
welf with (2) and {(3). Prominent among these are Australia
{p=03, the United Kingdom {p=0) and the US (p=.4). We
will focus upon these countries to illustrate the arguments.

Table 3: Mean Business Cycle Characteristics (months)

Process (0 () (il (ivy (v) (vi)
Duaration of contraction 15 14 12 14 21 22
Duration of expansion 65 45 72 47 21 22
Cycle length 8 39 B4 61 42 44

Notes: (1) Australian data.

{11} UK Data

{ii} (2)=(3) for Australia, p=0
{iv) (233} for UK, p=0

fiv) (2)~(3) for UK, p=0, a=D

(v} (2)-(3) for UK. p=.4, a=0

Now it is very difficult to see if (2) and (3) could generate
a cycle of the type evideat in columns (i) and (i) of Table
3. The principal difficulty comes from the fact that the
rules of the Bry-Boschan program are almost impossibie 1o
analyse analytically. It is here that simulation can be a
great help. For given values of ‘a’, p, and 2 way of
generating uy, it is possible to pass the simulated Yt
through the Bry-Boschan program and to then check if
{2)-{3) can produce a realistic cycle. Table 3, columns {ii1)
and {iv}, give the average durations of the cycle and
its phases using 200 simulated series from {(2-(3). In doing
these two simulations the values of a and G are estimated
from quarterly data on GDP for Australia and the United
Kingdom separately-—see Pagan (1997a, 1997b) for details
{note that p=0). Column (iii) is for Australia and column
{iv} for the United Kingdom, The differences between the
two simulations arc that both a3 and G are higher for.
Australia. as s the ratio a/c.

Table 3 shows that the simple linear mode! of (2)yand (3 is
capable of reproducing the broad details of the cycle,
specifically the duration of the cyele and the asymmetry of
expansions and contractions. To understand the elements of
the explanation, column (v) performs the same simulation
as in column (iii) but now ‘a’ is set to zero. Obwiously it
is the trend growth in output that produces the asymmetry
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incycles and it is a key element in determining the duration
of the cycle. What then is the role of a non-zero value of
p? A simulation is run in column (vi) that is identicai to
that in (v) except that it sets p=4 when generating data, It
is clear that the presence of small amounts of serial
correlation in u has fittie effect upon the nature of cycles.

Clearly Table 3 is a challenge to those who maintain that
linear models cannot generate a realistic cycle and the
results raise the question of exactly what it is that a non-
linear model of the cycle would provide that cannot be done
with a linear model. Models such as Goodwin's don't
provide an explanation of the magnitude of a and are sient
about & as well, since they are deterministic. To answer the
question one needs to be able to simulate some of these
non-linear models and to compute cycle characteristics.
That leads o two complications. Fisst, some stochastic
clements must be introduced and there is no obvious place
for inserting them. Second, and more importantly, it is
hard to find any examples in the literature that are claimed
to be representative of actual cconomies, Mostly, their
proponents are content (o point to the fact that the modeis
can generaie a cycle under certain calibrations of their model
and there is no attempt to show that the processes for
output generated by these non-linear models would look
like the results in Table 1.

In fact, one would expect that many properly calibrated
non-linear models, such as Goodwin's, will produce
realistic cycles, simply because they imply a model such ag
{2) with u; a non-iinear fuaction of Ayi.1 and the non-
lincarity is not needed to produce reafistic cycles. These
predator-prey models feature a mechanism whereby the prey
{workers) earn income (wages) that depends on the aggre-
gate amount of employment i.e. in conventional economic
terms a Phillips curve is embedded within them. Changes
in wage raies impact upon the rate of profit and, through a
ron-finear structure, the rate of investment. Trend growth,
‘a’, is assumed known and the near unit root predicted to be
in output stems from a slow response of wages {o
unemployment. As already seen in Table 3, a non-linearity
in uy is unimportant for the existence of a cycle and for
replicating its main features. Where non-linearity may have
arole is in explainiag some characteristics of the cycle not
dealt with in Table 3. Specifically, there is the issue of
duration dependence i.c. the contenlion thal the probability
of exiting from 2 state such as recession depends on how
long has heen spent in i, Evidence on such a characteristic
1s not easy to get, since there are so few cycles, and it is
really only US data that is sufficiently developed to produce
a reliable analysis. Conseguently, substantial work needs to
be done on this topic. Despite this, the important lesson o
be fearned from the simulations of Table 3 is that
proponents of non-tinear cycle models need to be much
more precise about what characteristics of the cycle they
seek to explain and why linear models cannot capture these
effects. Early analysis, for example Blat (1983), adopted
this stance, but the characteristics focussed on, principally
asyrametry, can be produced by linear-models. :

3. ESTIMATING SOME LATENT VARIABLE
MODEL

There has been an increasing trend in econometrics towards
the use of lalent variables as an essential part of models. In
many of these cases it is hard to cngage in omaximum
likelihood estimation, since the likelihood involves only



those random variables for which there are realizations, and
this makes it nccessary to integrale out any latent variables.
Sometimes the order of the integration which needs to be
performed s very high. In these instances, Simulation
based methods of estimation appeal. The variant adopted
here is that 1ermed ‘indirect estimation’ in Gouriercux,
Monfort and Renault {1993), although it has been
implemented as proposed in Gallant and Tauchen (1997).
Martin and Pagan (forthcoming) contains details of the
main application presented in this section.

The methad distinguishes between a statistical or auxiliary
model which is fitted to the data and a model of interest
whose paramcters it is desired to estimate, In the method of
indirect cstimation the parameters of interest are estimated
indirecely {rom the auxiliary model rather than directly, as
would occur with maximum likelihood. The underlying
theory that justifies the approach is that of pseudo-
maximum likelthood. If % are the parameters of the
auxiliary modet and § are those of interest then it is well
known that the scores with respect to ® (dy) 1. the first
derivative of the assumed log likelihood of the auxiliary
model, have the property that Eg idn(n’)]=0, where Eg is
the expectation taken with respect to the data generating
process of the model of interest and n* is the pseudo
maximum likelihood estimator. The laiter is a function of
8, the wrue value of 9. These facts suggest that one
gstimate 8 by finding a value for & which sets
Ep[dr(rni=0. Il n* was known and Eg could be found
analytically, we could therefore estimate € by solving the
sel of equations Baldz(n"1=0 for 8. Once this principle is
accepted it only remains to replace T by some observahle
value and to find a method for evaluating Eg. The former
task is accomplished by using the MLE of ® from the
auxiiiary model in place of n™, as this is known to be a
consistent estimator, while the second is resolved through
simulation: for any given value of 8 one can simulate
artificial data from the model of interest thereby enabling
one to estimate Egldx{m")] as a sample average.

A simple example can be used to illustrate the idea.
Suppose the model of interest is a Probit model, with a
single variable ¥ inthuencing the probability of a decision
Le. priy;=11 = ®(x;8), where @ is the cumulative standard
normal density. Regressing y; upon x; will not consistently
estimate 8, but it can be used as the auxiliary model
i.e. one can act as if yi = xjn+e;, where ¢ is taken to be
nornsally and independently distributed with zero mean and
unit variance, and then find the value of 8 which sets the

n
expected value of the scores for m, !t SR (yexin ™),
i=1
w zero. This expectation is 0¥ % [@(x:8) —xm” |
i=1

Replacing n by the OLS estimate of n found by

o
regressing v on Xp. gives an equation ¥, X [(I){xi@) ~%;7t]
=1
=0, which yields the indirect estimator of 8.

i have generated 3000 observations from a probit model
n

with 8 = 1. Figure 1 plots a ¥ ong {(b(xié\} wxﬁ?j for a
i=t

- ~ a3 N .
range of values of 9: 8 will be where the pseudo-score is
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zero. In fact it produces an estimate of 8 thai is virtually
identical to its frue value.

Fig 1 Pseudo-Score for indirect
Estimation of 2 Probit Mode!

0.08 +

1.5

-0.15 4+

0.2 +

-0.25 ~

A second example concerns volatility in asset price markets
Such markets are very volatile at certain times and
quiescent at others. The volatility in prices is an important
phenomenon as if makes investments in assets risky.
Consequently, the provision of appropriate models of the
volatility has become a major focus of econometric research
in the late 1980s and carly 1990s, Central to this research
has been the search for some simple ways of describing the
volatility, followed by the development of methods to
estimate the resulting models. An atiractive description is
to conceive of the market as being in one of two states,
termed high or low volatifity. Specifying a set of transition
probabilities to describe how one moves from one state to
the other would then constitute a simple model of
volatitity. Such hidden state models have been of intercst to
many disciplines for some time. The state space form used
extensively in control engineering is a classic example of
such a model, although in that structure the state is viewed
as being a continuous random variable which is driven by
shocks whose moments are taken 1o be known or to depend
upon observable quantitics. The simple two-state
formulation just described can be written in a state space
format but the state space is discrete and shocks have
moments that depend on uncbservable quantities, so the
estimation of such models is non-standard. Under specific
distributional assumptions the model just described was
estimated with maximum Hkelihood techaiques by
Hamilion (1989 and, siace then, has had many
applications to economic data seis such as economic
activity, interest rates, exchange rates etc. Pagan and
Schwert (1990 is an early application. That paper used the
model to describe volatility in US stock returns over the
period 1834 to 1923, and we concentraie upon that same
data set here

One has to select an auxiliary model for this daia set.
Perhaps the best known statistical models for asset
returns are those in the Autoregressive Conditionat
Heteroskedasticity (ARCH) class, introduced by Engle
{1982). These model conditional volatility as a function of
past returns. A version that has been very popular in the
analysis of stock returns has been Nelson’s (1990)
exponential generalized ARCH (EGARCH) process,

log Gt = Ro+my l0g G-t +7W321,



[

where z; w[isti - (%)

identical and independently distributed random variable with
mean zero and density equal to that of Student’s t with ns
degrees of freedom. Many programs exist to fit the
EGARCH wmodel to a set of data on returns. It therefore
appeals as a good auxiliary model for the estimation of the
parameters of the latent variable modeil. To formally
describe the laiter, let vy be volatility at time t and let z
take the value of unity when volatility is high and zero
when volatility is tow.2 Then vi = Bo+612; and the model
is completed by describing how z; moves from one state to
anocther. Table 4 detaiis these fransition probabilities.

}4— T4 £¢, while g¢ is an

Table 4: Transitiom Probabilities for =

G 1
-1\t
0 O3 1-83
1 -84 8>

Table 5: Paramefer estimates of Hamiiton’s
model Stock returns data, monthly,
1834 to 1925

Paramneter fndirect Estimates MLE (Hamilton)
B¢ 6.1173x1074 6.1022x 1074
81 19.9976x 104 18.4889x10-4
8, 0.9017 0.9008
83 0.9610 0.9614

Table 5 gives indirect estimates of 8] (j=1, ..., 4), where
simulation was used to evaluate the expected value of the
pseudo-scores. It is noticeable that the MLE using the
distributional assumptions in Hamilton (1989) and the
indirect estimates are quite close so that any analysis using
the indirect estimates seems likely to be applicabie to the
MLE as well.

Why would one to indirect estimation? Apart from the fact
that maximuom likelihood may be infeasible in many latent
variable models, it is the case that one can learn a lot about
the nature of a latent variable model by studying it through
the ‘lens” of the auxiliary model, simply because the latter
surnmarizes characteristics of the data in a way that may be
more familiar to us, To iHustrate this consider the auxiliary
EGARCH model. This model is known io capture a
characteristic of volatility sometimes referred to as the
leverage effect’, L.e. volatility is higher in a bear market
than a buil market. Consequently, it is interesting to ask
whether the two state latent variable model being estimated
above i3 capable of reproducing this characteristic. Again,
simulation methods can be used to provide an answer to
this. Using the parameter estimates of Table 5, 3000

< To aviod confusion it needs to be appreciated that v, is
meant t0 be the actual volatility whereas o, is a statistical
description.
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realizations were fitted to an EGARCH process and, in all
cases, it was noticeable that the EGARCH parameter which
captures an asymmetric response of the conditional variance
to news (74) is close to zero and posirive (around .02).
In the EGARCH mode! estimated from data it is - 11.
Consequently, Hamilton’s model does not replicate the
leverage effect that exists in the data, whereby volatility is
larger when returns are negative than positive, and this
would lead us to reject it as a good description of the data.
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